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Abstract. A series truncation method is used to compute the flow into a line sink from a region of fluid with a free 
surface and a sloping wall beneath the sink. The method admits a well-known exact solution for a particular value of 
the slope. Solutions with a cusp above the sink, and with a stagnation point above the sink are computed for all 
values of the slope, and compared with results at both ends of the range, i.e. with results for both a vertical wall and 
a horizontal bottom, with good agreement. 

1. Introduction 

In this paper  the problem of withdrawal of water though a line sink situated beneath a free 
surface is considered. The free surface can be thought of as an air-water interface, and the 
line sink as a slot through which the water is being withdrawn. The water body is assumed to 
be infinitely deep with semi-infinite horizontal extent. The line sink is situated at a corner in 
the boundary,  which then slopes away with angle ~7 (see Fig. 1). Note that with this 
geometry,  the problem is essentially two dimensional. One reason for choosing this geometry 
is the existence of an exact solution to the full non-linear problem when 7 = 1/3 [1-3]. 

Apar t  from the direct application, this problem has relevance to the process of withdrawal 
of water  from layers of fluid of different density, as in a reservoir, cooling pond or solar 
pond,  where the action of the weather and inflows and withdrawals can sometimes lead to 
the formation of homogeneous layers of different density [4]. If the free surface is replaced 
by an interface of infinitessimal thickness to a fluid of lesser density, and it is assumed that 
the lighter layer is stagnant, then it is possible to replace the gravity g by an effective gravity 
g'  = (Ap/p)g ,  where Ap is the density difference between the layers, and p is some reference 
density. The condition of constant pressure along the interface reduces to the same condition 
of constant pressure along a free surface acted upon by this modified gravity g'. The 
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Fig. 1. This figure shows the geometry being considered in this paper. A line sink is withdrawing fluid from a water 
body beneath a free surface above a sloping boundary. 
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assumptions necessary are of arguable validity, since they neglect the effects of viscosity at 
the interface, which would undoubtedly induce some motion in the upper fluid. However ,  
the numerical solutions follow the qualitative behaviour of the experiments [5-9] quite well. 

For  this problem with the geometry described above, there are two important  parameters 
governing the flow. The first is the Froude number F, which gives an indication of the 
strength of the sink compared to the weight of fluid above it, and the second is y, the angle 
at which the boundary slopes away from the sink. 

The Froude number  is usually defined as F = q/(gH3) 1/2, where q is the flux per unit 
length into the sink, g is the acceleration due to gravity, and H is the depth of the sink 
beneath  the undisturbed free surface. In this case the flux into the line sink is given by 
m(1 - y ) ,  where m is the strength of the sink, since the fluid can only enter  the sink through 
an arc of ~r(1 - 3'). Thus, the definition of the Froude number  used here will be 

F = m(1 - y )  
(gH3)1/2 . (1) 

It has been shown by Tuck and Vanden-Broeck [10], that only two steady solutions can exist 
for this problem. They are the stagnation point solution and the cusp solution. The 
stagnation point solution is thought to occur for small values of the Froude number  and is 
characterised by a stagnation point on the free surface directly above the sink. The cusp 
solution occurs for larger values of the Froude number and is characterised by the cusp-like 
shape of the free surface. In this case, the free surface attaches smoothly to the wall, 
maintaining a finite, non-zero velocity at the point of contact. It is possible that this type of 
solution is the forerunner  to a solution in which both air and water are drawn directly into 
the sink, and the interface enters at an angle between 0 and 90 degrees [11]. Numerous 
examples of both stagnation point solutions [12-17] and cusped solutions [1-3, 10, 16, 18, 
19] can be found in the literature. 

Most of the work carried out with this particular geometry has been at the extremes of the 
range y, that is, y = 0 and y = 1/2. 

In this case where y = 0, Tuck and Vanden-Broeck [10] have shown that the cusp solution 
exists for a unique value of the Froude number (approximately F = 3.55). Hocking and 
Forbes [13] verified this result and showed that steady stagnation point solutions exist for a 
range of Froude numbers from 0 to about 1.42. 

In the finite depth case, y = 1/2, most researchers have worked with a Froude number  
defined slightly differently. Since their region of interest was a fixed finite depth, they found 
that a more natural definition of the Froude number was one based on the level of the fluid 
above the lower boundary a long way from the sink. Using this definition for the Froude 
number,  they found that the cusp solution exists in the range ( - 1 ,  ~) [16, 19]. Forbes  and 
Hocking [12], and Hocking and Forbes [14] also calculated stagnation point solutions for 
Froude numbers in the range [ 0 , - 0 . 3 ) .  

Little work has been carried out for arbitrary y. At y = 1/3, Sautreaux [2] (see also [1, 3]) 
discovered that an exact solution with a cusp can be calculated. Vanden-Broeck and Keller 
[16] and Hocking [18] have numerically calculated cusp solutions for arbitrary values of y. 
They  found that for each value of y, except at y = 1/2, the cusp solution exists at a unique 
value of the Froude number.  

In the present work, we calculate the boundary of the region in parameter  space in which 
stagnation point solutions occur for arbitrary y. We compare these with work done at the 
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extremes of the range of y. When y = 1/2, the problem changes (the flow at infinity is no 
longer zero) and our  solution technique is not designed to handle this. To compare our 
results with work for the case of finite depth, we calculate the solutions as y approaches 1/2, 
and take this to be the limiting behaviour of the fluid at 3' = 1/2. 

We find that our solutions are consistent with work done at the extremes of the range of y, 
in that for each y the solution technique converges for a finite range of Froude numbers 
0 < F < Fcrit. It is still unclear why the solution method fails to converge for Froude numbers 
greater  than the critical value. However ,  this breakdown is consistent with similar results in 
related problems, in which integral equation techniques also failed at the same value of F as 
the series truncation method (see for example [12]). 

2. Problem formulation 

The solution is obtained using a series truncation method similar to that first used by Tuck 
and Vanden-Broeck [10]. The method is to define a transformation which maps the region of 
interest into the lower unit semi-circle. Specifically the transformation maps the free surface 
of  the fluid to the boundary of the semi-circle, and the solid boundary to the real axis. An 
infinite series with unknown real coefficients is included in the transformation to enable us to 
satisfy the boundary conditions along the free surface. 

The  fluid is assumed to be inviscid and incompressible, and the flow to be irrotational, and 
therefore  the equations governing the flow are 

vZqb(x, y) = 0 (2) 

subject to the boundary conditions, 

N x ~  x - qb v = 0 (3) 
1 2 gN(X) + y ( ~ x  + ~]-) = O, (4) 

on Y = N(X),  where Y = N(X) is the equation of the free surface, • is the velocity potential,  
and g is the acceleration due to gravity. In the case of a two-layer fluid with a stagnant upper  
layer, g would be replaced by g'  = (Ap/p)g in this and all subsequent equations. Equat ion 
(3) is the kinematic boundary condition, and equation (4) is BernouUi's equation which 
ensures that the pressure is constant along the free surface. As X---> oo the velocity of the 
fluid tends to zero, so the free surface at infinity has elevation Y = 0. 

Following the work of Hocking [18], we scale all lengths by (me(1 - T)2/87r2g) 1/3 and all 
velocities by ( m g ( 1 -  y)lTr) 1/3 to get 

V24~ = 0  

n + + = o ,  

(5) 
(6) 

(7) 

where y = r/(x) is the free surface and ~b(x, y) the velocity potential in non-dimensional 
variables. 

The Froude number  is given by equation (1), so after scaling, the Froude number  in terms 
of the non-dimensional sink depth, h s, becomes 
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F = ,  / (8) 

Following Tuck and Vanden-Broeck [10] and Hocking and Forbes [13], we define a new 
complex variable t so that 

4t  
e f = - -  (9) 

(t + 1) 2 ' 

where f = ~b + itO is the complex velocity potential. This maps the unit circle in the t-plane to 

an infinite strip in the f-plane (see Fig. 2). 
We also transform the region in the z-plane into the lower half circle of the t-plane (see 

Fig. 2). An appropriate transformation is 

dz _ it_r( t + 1)2v_ 2 ~ a f  (10) 
dt j=0 

Consider now equations (5) - (7) ,  the governing equations for this system. 
Equat ion (5) is satisfied by our choice of transformation (10), since f(z(t)) is an analytic 

function. Equation (6) asserts that the free surface of the fluid is a streamline. Equation (9) 
ensures that tO = 0 on t = e -i°, 0 ~< 0 < ~r. Thus, equation (6) is automatically satisfied by our 
choice of transformations. The vertical wall above the sink corresponds to 0 < t < 1, and the 
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Fig. 2. The geometry of the problem in the z-plane, the t-plane and the f-plane, respectively. 
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sloping wall beneath the sink to - 1 < t < 0, provided all the aj, j -- 0, 1, 2 . . . .  are real. Note  
that f ( z ) - -~ (1 /1 -y ) ln ( z+ ihs )  as t - ~ 0  and f ( z ) - - ~ ( 2 / 1 - 2 y ) l n z  as t - - ~ - l ,  i.e. z--~o% 
reflecting the restriction of the fluid to the region beneath the line y = 0. Hence it remains to 
solve equation (7) on the free surface of the fluid. 

Since r/(x) is the equation of the free surface, it can be written as r/(x) = ~m(z(t(O))) for 
t - - e  -i°, 0 ~ [0, ~']. Making this substitution and using the transformations (9) and (10), 
equat ion (7) can be written as, 

P(O, y; at) = y(0) + Y(O) + 
(2 cos(½0))4-4y tan2(½0) 

A2(0) + B2(0) 
= 0 ,  (11) 

where 

& 
A(O) = 2., aj cos( j0)  

j=0 

B(O ) = ~ a t sin(j0)  
j=0 

r ( o )  = - ( 2  cos(½s))2-2-/J 
If there is a stagnation point on the free surface above the sink, then we require y ( 0 ) - - 0 .  

If the cusp solution is to exist we require that the velocity of the fluid is not zero at t -- 1, 
the point on the free surface directly above the sink. Thus, we require 

aj = O. (12) 
j=O 

Equat ion (11) then gives the location of the cusp point as 

22-4"/ 

y(O ) l o :o  = - I f ' ( z ( O  ))12o=o - ~ 2 .  

(,~=o JaJ) 

(13) 

It is also necessary to compute the sink depth h s to find the value of F. Since t = 0  
corresponds to the sink, and t = 1 to the point on the free surface above the sink, the sink 
depth is 

fO h, = y(t)lt_ 1 - t--/(1 + t) 2~-2 ~ ajt j dt. (14) 
j=0 

In the case of a cusp solution y(t)lt= 1 is given by (13), and for stagnation point solutions, 

y(t)lt= 1 = O. 

3. An exact solution 

It was initially shown by Sautreaux [2] (see also Craya [1], Tuck [3]) that there is an exact 
solution with a cusp when y = 1/3. To explore this possibility we set y = 1/3 in (11) with (13) 
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and (12) and assume aj = 0, j = 2, 3 . . . . .  Equation (12) gives a 0 = - a  I and substituting into 
(11) and solving for a 0 gives a 0 = (2/3) 1/3= --a 1. So for this exact solution, equation (10) 
becomes 

de 1 - t  
d t -  - i  /1/3(1 + / ) 4 / 3  • ( 1 5 )  

We can integrate (15) to obtain the free-surface shape and the Froude number.  From 
equation (8) we have 

(8=2) 1,3 
F : \  h3 / ~ .2 .01,  

since h s = ! q 2 / 3 R ( - 2  2-  _ ~ 3 , ½ ) ~ 2 . 6 8 ,  where B is the Beta-function [20]. Numerical work by 
Hocking [18] and Vanden-Broeck and Keller [16] indicates that no steady solutions exist for 
F slightly larger or smaller than this value. 

4. Numerical solution 

We cannot solve equations (11), (12) and (13) for general values of y unless we use 
numerical techniques. If we truncate the series to N terms and then evaluate (11) at N 
different values of 0 i = ( i - ½ ) T r / N ,  i = 1 , . . .  , N ,  we are left with a set of N non-l inear  
algebraic equations, which we can solve using a Newton iteration scheme. Initially, a starting 
guess for the series coefficients was chosen as the exact solution (for 3' = 1/3) for all cusp 
simulations, and all zeros for stagnation point simulations at very low values of F. Once 
these simulations had converged, however,  these solutions were used as a starting point for 
simulations with slightly different parameter  values. 

Using this scheme, the cusp solutions were computed for a range of values of 3, and 
compared with the work of Hocking [18] and Vanden-Broeck and Keller [16] with agreement 
to graphical accuracy. At  3"= 1/3, the numerical scheme computed the exact solution 
accurate to 5 decimal places with N = 40. These results show the method is working 
correctly. Figure 3 shows an example of a cusp solution for the case 3' = 1/3, compared to 
the stagnation point solution with F = 0.9, close to the limit of F for which solutions could be 
computed.  

To compute stagnation point solutions, it is necessary to impose an extra equation on the 
system to fix the Froude number,  and consequently an extra coefficient in the series must be 
computed.  The extra equation is obtained by enforcing equation (14) numerically, thus fixing 
h s and therefore  F. 

Figure 4 shows the shape of the free surface for 3 different values of 3' for a fixed value of 
F = 0.5. All are scaled so that the sink is located at y = - 1 .  The trough near the stagnation 
point deepens significantly as 3' increases, and the free surface asymptotes to the stagnation 
level more slowly. In the limit as 3"---~0.5, the free surface never returns to the stagnation 
level, but levels out at a height dictated by the (now non-zero) downstream velocity. 

The  stagnation point solutions were usually computed to 100 terms, which gave answers 
accurate to 3 decimal places. Table 1 shows convergence of the series coefficients for 
increasing values of N for a typical case (3"=0.25, F = 0 . 8 ) .  Generally, the higher 
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Fig. 3. C o m p a r i s o n  o f  the  f ree  surface  shape  for a s tagnat ion  po int  so lut ion  n e a r  Fcrit  , F = 0 .9  wi th  the  cusp  so lut ion  
(F  = 2 . 0 1 )  for  the  case  in w h i c h  y = 1 /3 .  T h e  d i a g r a m  is sca led  so  that  the  s ink  is l o ca ted  at y = - 1 .  
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Fig. 4. C o m p a r i s o n  o f  the  f ree  surface  shape  for  s tagnat ion  po int  so lut ions  for  F = 0.5 at v a l u e s  o f  y = 0 .0 ,  0 .25  a nd  
0 .45 .  T h e  d i a g r a m  is sca led  so that  the  s ink is l oca ted  at y = - 1 .  

Table 1. T a b l e  o f  the  c o m p u t e d  ser ies  coef f i c ients  for  3' = 0 .25 ,  F = 0 .8  

N a o a 5 al0 a15 a30 

12 5.82411 0.000952 -0.99 × 10 -4 - - 
24  5 .82411  0 .000983  - 1 . 8 6  × 10 -4 7 .6  × 10 -5 - 
48 5 .82411  0 .000985  - 1 . 9 2  × 10 -4 8.5 × 10 -5 - 1 . 1  × 10 -5 
96  5 .82411  0 .000985  - 1 . 9 2  × 10 -4 8.6 × 10 -5 - 1 . 2  × 10 -5 

192 5 .82411  0 .000985  - 1 . 9 2  x 10 -4 8 .6  x 10 -5 - 0 . 9  × 10 -s  

coeff icients converged  more  slowly,  due to the effects of  the truncation. The  stagnation point  
solut ions  were  found to exist for a range of  Froude numbers,  0 ~< F < Fcrit for some  finite 
upper bound  F~rit. The  value of  fcrit w a s  calculated approximately  for a series of  values  o f  7, 
by fixing y and increasing the Froude number until the algorithm failed to converge .  The  
results obtained are summarised in Fig. 5, which shows the max i mum Froude number  at 
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Fig. 5. Plot of regions in parameter space within which solutions have been computed• The cusp solution is unique 
for any value of % but the stagnation point solutions were computed for all values of F beneath the curve shown• 

which stagnation point solutions were computed,  and the unique Froude number  at which 
cusp solutions exist, for each value of 3' in the range. 

This behaviour is consistent with the work of Hocking and Forbes [13], and Forbes and 
Hocking [12] at the extremes of the range of y. As the Froude number approached Fcrit, 
waves began to appear on the free surface, but these were clearly of numerical origin, with 
the wavelength dependent  on the number of collocation points. Forbes and Hocking [3] 
recently used a formulation for the finite depth case which should find waves on the free 
surface at small Froude numbers if they exist, but none were found. Thus, the formation of 
these numerical waves as F approaches Fcrit probably foreshadows the failure of the 
numerical scheme. The reason for the failure of the numerical scheme is unclear, and may be 
related either to the physics or to the method itself. However ,  the fact that this failure occurs 
in related problems even using an integral equation approach, (see [12, 14]), suggests that it 
is not the choice of numerical scheme. Hocking and Forbes [13] calculated the stagnation 
point solution for the case y -- 0. They found that the limit of their solutions (for 3' = 0) was 
at about  F - -  1.42. As can be seen from Fig. 4, our solutions broke down at about F = 1.45 
( f o r  v = o). 

Forbes and Hocking [12], and Hocking and Forbes [14], calculated stagnation point 
solutions caused by a line sink in a fluid of finite depth for different heights of the sink above 
the lower boundary.  The solution which they obtained when the sink was on the lower 
boundary  corresponds to the limit of the solutions we have calculated as 3,-+ 0.5. In the finite 
depth case, the velocity at infinity is no longer zero, so the free surface compensates by 
dropping by an amount  (zr/hb) 2, where h b is the height of the fluid above the lower boundary 
a long way from the s ink [18]. Thus, the sink depth beneath the stagnation point can be 
expressed as a function of the down-stream depth, 

h~ = h b + 
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W o r k i n g  wi th  the  d o w n - s t r e a m  F r o u d e  n u m b e r  

(2 2)1,2 
Fb=\ h3 / , 

the  l imi t  of  o u r  so lu t ions  as 3"--~0.5 was F b = 0 . 3 1 .  This  va lue  c o m p a r e s  well  wi th  tha t  

o b t a i n e d  by  F o r b e s  and  H o c k i n g  [12], who  f o u n d  F b = 0.3. H o c k i n g  and  F o r b e s  [14] were  

ab l e  to  c o m p u t e  so lu t ions  on ly  up  to  F = 0.24, bu t  t he re  a re  signs of  numer i ca l  ins tab i l i ty  in 

t he i r  m e t h o d  which  a re  i n d e p e n d e n t  of  the  physics .  

5. Summary 

F o l l o w i n g  the  w o r k  of  T u c k  and  V a n d e n - B r o e c k  [10], and  H o c k i n g  [18], we have  m o d e l l e d  a 

s t e a d y - s t a t e  w i t h d r a w a l  s i tua t ion  in a wa te r  b o d y  us ing a ser ies  t r unca t i on  m e t h o d .  B o t h  

types  o f  so lu t ions  shown to exist  by  Tuck  and  V a n d e n - B r o e c k  [10] were  o b t a i n e d .  

T h e  so lu t ions  con ta in ing  a cusp were  in g o o d  a g r e e m e n t  wi th  ea r l i e r  work .  In  the  case  of  

f lows wi th  a s t agna t i on  po in t ,  the  resul ts  were  found  to be  cons i s ten t  wi th  o t h e r  w o r k  d o n e  at  

t he  e x t r e m e s  of  the  r ange  o f  3' in tha t  for  each  y, so lu t ions  exist  ove r  a r ange  of  va lues  o f  the  

F r o u d e  n u m b e r ,  0 < F < Fcrit , w h e r e  Fcrit is some  finite u p p e r  b o u n d .  T h e  va lues  of  Fcrit 
c a l cu l a t ed  r a n g e d  f rom F =  1.48 at  3' = 0 to F = 0.575 at  3" = 0.499. This  u p p e r  b o u n d  in 

F r o u d e  n u m b e r  is cons i s t en t  wi th  o t h e r  w o r k  on  closely r e l a t ed  p r o b l e m s ,  which  have  b e e n  

so lved  us ing b o t h  in teg ra l  e q u a t i o n  and  ser ies  t r unca t ion  m e t h o d s .  This  suggests  tha t  s o m e  

phys i ca l  m e c h a n i s m  m a y  be  r e spons ib l e  for  the  b r e a k d o w n .  

F o r  each  va lue  o f  y, no  s t eady  so lu t ions  of  any  k ind  were  f o u n d  a b o v e  this cr i t ical  va lue  of  

F ,  unt i l  a s e c o n d  cr i t ical  va lue  of  F was r e a c h e d  at which  the  cusp so lu t ion  occur red .  A b o v e  

this  s e c o n d  cr i t ical  va lue ,  no  fu r the r  s t eady  so lu t ions  were  o b t a i n e d .  
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